Computer Architecture Toolkit

Article 2: simpleADL Software Installation
Pete Wilson
Version 1.03 * May 20,2017

page |

L. INEFOAUCTION ...ttt sttt ettt sttt s s s s b st st sassssssbessasesssssstsssnsssssssnsnesasns w3
L. 1. FOIAEE HIEIAICRY ...ttt s eeas et ss et s et ese s aeneseas 3
2. INSTAll SIMPIEADL ...ttt seseetsesstae e sesseas e ssess e et ss b bttt bttt bt sssstasbacen 4
3. Create @ NEW AFCRITECTUNEc.cveeeeeeeeieieecceetetsecs s ts et e sses s se s st s s ss et esssasassasesesssassssasasssssassssasesssssssesasassssssssasasasn 9
3.1 RUNNING SIMPIEADIL ...ttt ettt ettt sttt st sttt st sttt 10
3.2 THIS REICASE ...ttt sttt sttt s st st s s s st s e st s st assnsssssssssssssssssssasansasssnsees 13
3.3 LIMILATIONS weeeeeeiiienceeirietseeeieesistseseestsssttsese st stsssesssssssssssssssssssssssssessssssassessssssssssssesesssssssesssssssesnssssesssssens 14

page 2

1. Introduction
The software that accompanies these articles assumes a few things:

-You're using a Mac, and you have a sufficiently up-to-date XCode (and its command line tools)
installed on that Mac

- You know the basics of using XCode to build ‘command-line tools’
- You're comfortable with using the Terminal (no great skill is required)

- A particular folder hierarchy.

The software is provided as a zip'd file.

- Download it, and then double-click it. It should decompress into a folder hierarchy as described
below.

- Move it to where you want.

- Rename the upper level folder if you like (from ArchProjRelx.x to whatever you like) (Do NOT
change the innards of this folder, though)

WARNING: there must be no spaces in the names of any folder in the folder hierarchy containing
ArchProjRelx.x and if you change the name, that name must also have no spaces.

1.1. Folder Hierarchy

The folder hierarchy looks like this, where the outer folder may be called something else (and you can
change its name):
v ArchProjRel0.2
v archModels
[re
r32
v archTools
simpleADL
simpleAsm
simpleModel
[= gocs
¥ installad
I kdLibrary
¥ releasead|

That is, there’s a top folder (ArchProjRel0.2) which is going to hold all this stuff. It contains four folders,
archModels, archTools, docs and kdLibrary, along with a couple of files installadl and releasead|

* archModels contains a folder for each architecture - here, we have just two (r16 and r32). Each
architecture will contain its own architecture spec, source code and assembler and executable
model. More on this later.

* archTools contains a folder for each tool we have - here, simpleADL, simpleAsm and simpleModel.
simpleADL is the adl compiler.The other two are the canonical assembler and executable model.
Each folder contains also a makefile and a folder which contains an XCode project for the tool.
You can use the XCode project to play with the source code, if you wish.

page 3

* kdlibrary contains a number of projects which provide common functionality - a queue package, a
tokeniser package, a symbol table management package, and a utilities package.These are held in
their own XCode projects; when built, these perform simplistic testing of some elements of the
packages.The .c and .h files in these projects are incorporated by being copied into the simpleADL
project, into the simpleAsm, the simpleModel and into the generated projects.This lets you easily
see the source of the packages in any project, and it also means that if you make changes to the
source of any package, it will NOT be seen by all projects. Be careful!

An architecture, such as rl 6, has an internal structure:

\ 4 re
v arch
arch.adl
v programs
v bin
long.ldr
simple.ldr
v sre
long.asm
simple.asm
\ 4 projects
[asm
= model

Each architecture contains three folders.
* One, arch, contains a file arch.adl which specifies the architecture.

* programs contains a pair of folders, bin and src; src contains the (assembler) source of programs of
interest, and bin contains their loadable representations.

* The architecture requires an executable model and an assembler; these are collections of source,
along with a makefile held in model and asm respectively inside the projects folder.

The asm and model folders also have a structure. Here’s that for model:

v model
makefile
¥ model.c

% model.h
% modelmain.c
¥ types.h

W utilities.c

W utilities.h

The files model.c and model.h are created by simpleADL.. makefile contains instructions to compile the
necessary source files.

2. Install simpleADL

page 4

Installing the simpleADL software is pretty straightforward.All you need to do is to open a Terminal
window, cd to the archProjRel folder you've just unzipped, and type ./installadl.

If you’ve not played with the terminal before, it’s a program which lets you issue commands to macOS,
just like in the good old days of computing before graphical user interfaces.

You will find a folder called Utilities inside your Applications folder. Open up Utilities and you'll see
something like this:

B Activity Monitor.app
E] Adobe AIR Application Installer.app
Adobe AIR Uninstaller.app
» | 7] Adobe Application Manager
Adobe Flash Player Install Manager.app
» | 7] Adobe Installers

» | 7] Adobe Utilities
AirPort Utility.app
™ Audio MIDI Setup.app
3 Bluetooth File Exchange.app
é Boot Camp Assistant.app
}: ColorSync Utility.app
B Console.app
@ Digital Color Meter.app
&f Disk Utility.app
9‘7 DiskWarrior.app
M Grab.app
¢ Grapher.app
& HP Utility
,& Keychain Access.app
X MacBook EFI Firmware Update.app
& Migration Assistant.app
«/ Script Editor.app
« System Information.app
B Terminal.app
\@ VoiceOver Utility.app
&X' XQuartz.app

Double-click on Terminal.app to run it.You'll get a boring little window something like this:

page 5

Last login: Wed May 17 14:40:42 on ttys@24 B
dot bash profile
Bretigny:~ pete$

Click in the window, and type cd.

Then open a Finder window and navigate to a view which shows the ArchProjRel folder. Drag that folder
to the Terminal window, directly after the cd.The act of dragging puts the complete path to that folder
onto the line of text, thus:

Bretigny:~ pete$ cd /Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2

Now hit return.
This tells the terminal that you want to operate within the ArchProjRel folder.

Type pwd and then return.This tells the terminal to print the current working directory. On my
machine, which is called Bretigny,, we get this

Bretigny:~ pete$ cd /Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2
Bretigny:ArchProjRel-0.2 pete$ pwd
/Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2

Now type ./installadl and hit return.

A shell script called installadl which is inside the ArchProjRel folder will be executed. This tidies up files
and copies files into the right places, builds simpleADL and all the other stuff. It’ll ask for your password
during the installation process, but other than that the whole thing gets done in a few seconds.

The script does install programs in a directory in your machine. You may want to
open up installadl in a text editor to satisfy yourself it’s not doing anything naughty.

You should see something like this happen:

Bretigny:ArchProjRel-0.2 pete$./installadl
installadl 0.1v0

setting up tools:
copying files for simpleADL...

Making simpleADL. ..

rm sADL simpleADL.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o
generateAsm.o generateModel.o

clang -c -0 simpleADL.o simpleADL.c

clang -c -o utilities.o utilities.c

clang -c -0 TokUtilities.o TokUtilities.c
clang -c -0 TokName.o TokName.c

clang -c -o Tokens.o Tokens.c

clang -Cc -0 symbol.o symbol.c

clang -C -0 queues.o queues.cC

clang -Cc -0 generateAsm.o generateAsm.c

page 6

clang -Cc -0 generateModel.o generateModel.c

echo "making simpleADL as sADL"

making simpleADL as sADL

clang -o sADL simpleADL.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o
generateAsm.o generateModel.o

sudo cp sADL /usr/local/bin

Password:

Note that the terminal is asking for your password.

It needs this so the script can copy the simpleADL program into a folder (/usr/local/bin) so it’ll be easily
accessible from the terminal. The password the terminal wants is the one you use when you start up
your Mac.Type it in and hit return.The terminal will continue working.When it’s done, you'll have text
like this in the terminal:

Bretigny:ArchProjRel-0.2 pete$./installadl
installadl 0.1v0

setting up tools:
copying files for simpleADL...

Making simpleADL. ..

rm sADL simpleADL.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o
generateAsm.o generateModel.o

clang -c -0 simpleADL.o simpleADL.c

clang -c -o utilities.o utilities.c

clang -c -0 TokUtilities.o TokUtilities.c
clang -c -0 TokName.o TokName.c

clang -c -o Tokens.o Tokens.c

clang -Cc -0 symbol.o symbol.c

clang -C -0 queues.o queues.c

clang -c -0 generateAsm.o generateAsm.c
clang -Cc -0 generateModel.o generateModel.c

echo "making simpleADL as sADL"

making simpleADL as sADL

clang -o sADL simpleADL.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o
generateAsm.o generateModel.o

sudo cp sADL /usr/local/bin

Password:

Copying simpleADL into /usr/local/bin/.. as sADL
copying files for simpleAsm...

making simpleAsm. ..
rm sAsm asmmain.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o asm.o

clang -C -0 asmmain.o asmmain.c

clang -c -0 utilities.o utilities.c

clang -c -0 TokUtilities.o TokUtilities.c
clang -c -0 TokName.o TokName.c

clang -c -0 Tokens.o Tokens.c

clang -c -0 symbol.o symbol.c

clang -C -0 queues.o queues.c

clang -C -0 asm.o asm.c

clang -o sAsm asmmain.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o queues.o asm.o

Copying simpleAsm into /usr/local/bin/.. as sAsm
copying files for simpleModel. ..

Making simpleModel. ..

page 7

rm sModel modelmain.o model.o utilities.o

clang -c -0 modelmain.o modelmain.c
clang -c -0 model.o model.c
clang -c -o utilities.o utilities.c

clang -o sModel modelmain.o model.o utilities.o
sudo cp sModel /usr/local/bin

Copying simpleModel into /usr/local/bin/.. as sModel

listing architectures:
rié...
copying files for asm...

copying files for model. ..

Running simpleADL to create the architecture's asm and model source and header files...

Done. Took 3 milliseconds

Making the assembler and copying to /usr/local/bin
rm -f asmrlé *.o

clang -I. -C -0 asmmain.o asmmain.c

clang -1I. -Cc -0 asm.o asm.c

clang -I. -c -o utilities.o utilities.c

clang -1I. -c -0 TokUtilities.o TokUtilities.c
clang -1I. -c -0 TokName.o TokName.c

clang -I. -c -0 Tokens.o Tokens.c

clang -I. -c -0 symbol.o symbol.c

clang -I. -C -0 queues.o queues.c

clang -02 -o asmrl6 asmmain.o asm.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o
queues.o -I.

sudo cp asmrlé /usr/local/bin

Making the model and copying to /usr/local/bin
rm -f modelrl6 modelmain.o model.o utilities.o

clang -c -0 modelmain.o modelmain.c
clang -c -0 model.o model.c
clang -Cc -0 utilities.o utilities.c

clang -02 -o modelrl6 modelmain.o model.o utilities.o
sudo cp modelrl6é /usr/local/bin

r3z...
copying files for asm...

copying files for model. ..

Running simpleADL to create the architecture's asm and model source and header files...

Done. Took 2 milliseconds

Making the assembler and copying to /usr/local/bin
rm -f asmr32 *.o

clang -I. -C -0 asmmain.o asmmain.c

clang -I. -C -0 asm.o asm.c

clang -I. -c -o utilities.o utilities.c

clang -I. -c -0 TokUtilities.o TokUtilities.c
clang -1I. -c -0 TokName.o TokName.c

page 8

clang -I. -c -0 Tokens.o Tokens.c

clang -I. -c -0 symbol.o symbol.c

clang -I. -C -0 queues.o queues.c

clang -02 -o asmr32 asmmain.o asm.o utilities.o TokUtilities.o TokName.o Tokens.o symbol.o
queues.o -1I.

sudo cp asmr32 /usr/local/bin

Making the model and copying to /usr/local/bin
rm -f modelr32 modelmain.o model.o utilities.o

clang -Cc -0 modelmain.o modelmain.c
clang -c -0 model.o model.c
clang -c -o utilities.o utilities.c

clang -02 -o modelr32 modelmain.o model.o utilities.o
sudo cp modelr32 /usr/local/bin

All done.

Bretigny:ArchProjRel-0.2 pete$

You should read the output to be sure that there are no complaints. (Complaints like this:
rm: sADL: No such file or directory
rm: simpleADL.o: No such file or directory
rm: utilities.o: No such file or directory
rm: TokUtilities.o: No such file or directory
rm: TokName.o: No such file or directory
rm: Tokens.o: No such file or directory
rm: symbol.o: No such file or directory
rm: queues.o: No such file or directory
rm: generateAsm.o: No such file or directory
rm: generateModel.o: No such file or directory
make: *** [clean] Error 1

Are not a problem.The remove-a-file command rm is moaning that it can’t remove a file because it
doesn’t exist)

When this is done, you can run any of the tools, and the assemblers and models for the architectures,
from a terminal window. The assembler for an architecture X is called asmX; its executable model is
modelX. All the tools are placed inside the /usr/local/bin directory, which means you have access to them
by typing their names.The programs installed are

* sADL - the simpleADL compiler

* sAsm - the archetypal assembler

* sModel - the archetypal executable model

* asmrlé6 - the assembler for the rl6 architecture

* modelrlé6 - the executable model for the r16 architecture
* asmr32 - the assembler for the r32 architecture

¢ modelr32 - the executable model for the r32 architecture

3. Create a new architecture
To create a new architecture, the simplest thing to do is to
* Duplicate the rl 6 folder inside ArchProjRel, creating the rlé copy folder
* Rename the rl6 copy folder to the name you want to give the new architecture, say my_arch.

* Dive into the model and asm folders inside the projects folder, and delete the Derived Data folder
from each if present.

page 9

* Edit arch.adl in the arch folder to reflect the architecture you want

* Run the simpleADL tool, pointing it at your new architecture (by providing the path to the
my_arch folder). Do this in a Terminal window: simply type sADL and then drag the my_arch folder
into the Terminal window and hit return. Correct the inevitable errors.When eventually
executed correctly, simpleADL will write some new files into NewArch’s model and asm folders.

* When it all seems to work, cd back to the ArchProjRel folder and run ./installadl as you did
initially. This will populate your architecture with all the files you need and build the assembler
and executable model for it, and install the programs. [It will also do the same for all the
architectures, but it’s quick enough that this does no great harm].

* Modify the example programs that got copied into your asm folder to match your architecture -
or write new ones.

* In aTerminal window, type asmmy_arch (or whatever) <name of an asm file> to run your
generated assembler on the specified file, like asmmy_arch simple.asm. Correct the ineveitable
errors, and then execute the assembled file by typing modelmy_arch simple.ldr.

Rinse and repeat.

3.1. Running simpleADL

You can run simpleADL inside XCode. Just double-click on the simpleADL.xcodeproject file inside the
simpleADL folder inside the simpleADL folder:
v archTools
\ 4 simpleADL
¥ generateAsm.c
¥ generateAsm.h
generateAsm.o
¥ generateModel.c

% generateModel.h
generateModel.o
makefile

¥ queues.c

¥ gqueues.h
queues.o

B sADL

\ 4 simpleADL

v simpleADL
"Ej simpleADL.xcodeproj

=, SimpleADL.bbprojectd

Proceed as usual.You'll need to provide simpleADL with arguments, which you do using the
Product:Scheme:Edit Scheme menu and choosing Edit Scheme.The provide the needed argument(s)

page 10

M simpleADL) c=a My Mac

, pBuild Info Arguments Options Diagnostics
Run

P oo

S /’TBS‘ 7| [Volumes/Oxford) Road/User: j Working/

¥ Profile

» g Analvze

») Archive » Environment Variables

Expand Variables Based On M s

Duplicate Scheme Manage Schemes... Shared Close

However, the simplest way to proceed is to use a terminal window.

If you type sADL into a terminal window, it will respond with usage instructions:

Bretigny:~ pete$ sADL

simpleADL [simpleADL 1.0v25]
using utilities kiva utility functions 1.0v4 May 2017
using tokeniser package simpleTokeniser 1.0v11 January 2017
using queue package simpleQueues 1.0v1 [May 8 2017]
using symbol table symbol table management 1.0v1

All software copyright Kiva Design Groupe LLC 2017. All rights reserved. See license
for terms of use

usage:
SADL <options> <path to architecture folder>
options:
-u -> report release info
-p -> report parse progress
-a -> report assembler generation
-m -> report model generation
-5 -> report statistics

Done.
To generate assembler and executable model for an architecture, type sADL into a terminal window and
drag the architecture’s folder to it, then hit return.

If we do this for the r32 architecture, we get something like this:
Bretigny:~ pete$ sADL ,/Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2/archModels/r32

Done. Took 8 milliseconds
Bretigny:~ pete$
You can select any or all of the options by typing them on the commandline - it doesn’t matter what
order they’re in.You have to specify each one separately. As an example:
Bretigny:ArchProjRel-0.2 pete$ sADL /Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2/
archModels/r32 -u -s

-u report release info.
-s report statistics.
simpleADL [simpleADL 1.0v25]

page 11

using utilities kiva utility functions 1.0v4 May 2017

using tokeniser package simpleTokeniser 1.0v11 January 2017
using queue package simpleQueues 1.0v1 [May 8 2017]

using symbol table symbol table management 1.0v1

All software copyright Kiva Design Groupe LLC 2017. All rights reserved. See license
for terms of use

Number of instructions declared = 23
Number of fields declared = 9
Maximum number of fields per instruction = 5
Symbol Table 'architecture' stats:
Number of symbol queues: 29
Total number of symbols: 35
Average symbols per queue: 1
qo: 0 syms [0.000000x the avg]

gl: 1 syms [1.000000x the avg]
q2: 0 syms [0.000000x the avg]
gq3: 2 syms [2.000000x the avg]
q4: 2 syms [2.000000x the avg]
g5: 1 syms [1.000000x the avg]
g6: 1 syms [1.000000x the avg]
q7: 1 syms [1.000000x the avg]
g8: 1 syms [1.000000x the avg]
q9: 1 syms [1.000000x the avg]
qlo: 3 syms [3.000000x the avg]
gll: 2 syms [2.000000x the avg]
ql2: 1 syms [1.000000x the avg]
gl3: 0 syms [0.000000x the avg]
ql4: 2 syms [2.000000x the avg]
ql5: 0 syms [0.000000x the avg]
glé: 0 syms [0.000000x the avg]
ql7: 3 syms [3.000000x the avg]
ql8: 1 syms [1.000000x the avg]
ql9: 2 syms [2.000000x the avg]
q20: 2 syms [2.000000x the avg]
g21: @ syms [0.000000x the avg]
q22: 2 syms [2.000000x the avg]
q23: @ syms [0.000000x the avg]
g24: 2 syms [2.000000x the avg]
q25: 0 syms [0.000000x the avg]
g26: 3 syms [3.000000x the avg]
g27: 1 syms [1.000000x the avg]
q28: 1 syms [1.000000x the avg]

Done. Took 3 milliseconds
Bretigny:ArchProjRel-0.2 pete$

You can be ‘in’ any folder to run the tools.When you run sADL, the assembler and model files it creates
include information on where the relevant architecture folders are. So you can be anywhere and run
asmr32, for example - it will open the file you specify from the /src folder in the r32 folder hierarchy.This
is good, but limiting for real software development. But no-one develops in assembler, and simpleADL is
only intended as an educational and proof of concept toolkit.

You can get usage information by running the tools without any arguments. So, for the r32 architecture,
we get

Bretigny:ArchProjRel-0.2 pete$ asmr32
page 12

asmr32 0.1v1iz
using tokeniser simpleTokeniser 1.0v11 January 2017
using queue package simpleQueues 1.0v1 [May 8 2017]
using symbol table symbol table management 1.0v1

-r -> report all activities
-s -> report symbol table statistics
Bretigny:ArchProjRel-0.2 pete$ modelr32

architecture simulator 0.1v6 for 'r32_model 0.1v0'
default bin path '/Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2/archModels/r32"'
usage:
-1 -> report load progress
-r -> report execution (shortform)
-t -> trace execution (longform)
-s -> single-step execution.

<name of file to load> in /Volumes/OxfordRoad/Users/pete/ArchProjRel-0.2/archModels/
r32

Done.
Bretigny:ArchProjRel-0.2 pete$

3.2. This Release

The simpleADL version 0.1v18 improves capabilities compared to previous releases. In particular, it
allows the writing of data in a program, not just instructions.This requires minor changes in syntax.

Here’s what a data-using program looks like:

// example r32 assembler program

/*

versions:

0.1v0 - initial version with data and absolute fixups
*/

title label
memory 0x1000

start 0x50

codeseg

[main]
cpyc rl, 0; // allows for 12 bit constant
cpyc r2, 1000, // allows for 12 bit constant

[loop]

addc ri1, ri, 1;
sub r3, r2, ri;

bne r3, loop;
[finis]
cpyc r5, @datalabel;
halt;
dataseg
[datalabel]

a8 123456789 10;
dl6 0x100 0x200 0x300 0x400 0x500 0x600;
d32 0x12345678 0x4567890 0x98765 0x77 0x1235;

page I3

Changes are shown in bolded text; in summary:

* Programs must now declare codeseg before any instructions or data

* Programs must declare dataseg before any data

* Data is declared as a sequence of 1,2 or 4-byte values by the keywords d8, d/ 6 and d32.Values
may be integers or hex values.The values are space-separated and terminated by a semicolon

* The absolute address of a label may be captured into any instruction which loads a constant by
using the syntax (e.g.) cpyc @labelname No provision is made for labels whose addresses are

larger in size than permissible constants.

3.3. Limitations

simpleADL is fraught with limitations.We don’t propose to fix them, because we intend a more complete
toolkit which will be noticeably more capable. But just to reduce frustrations from discovering

limitations, here’s a list of some key ones:

Issue

Commentary

simpleADL generates instruction fetch-and-decode
code rather than using the code specified in

the .adl file (that is, it ignores the adl file sections
initial, operate and halt)

True, and this means that (for example) you can’t
specify an architecture with a delay slot; nor can
you say whether iptr is incremented before the
instruction executes.

Branch offsets are always in byte distances
between instructions

True, and this means you can’t specify an
architecture in which the displacement is a number
of words, rather than bytes.

There’s always one operation per instruction

True, and this means you can’t specify a VLIWV.

The loader format is absolute, not relocatable.

Yes.

The executable model is only for a single
processor

Yes.

The executable model doesn’t give useful
performance info, like ipc or MIPS.

True enough. But it’s an architecture simulator, not
an implementation simulator.You’ll need to wait a bit
for an implementation simulator, and for the ability
to model things like caches.

But you can compare architectures. For example,
simpleRISC executes way fewer instructions than
archTest for that trivial program. Same number of
loads and stores, though. And much bigger code
footprint for simpleRISC.

There doesn’t seem to be a way to write, say, addi
r7, 67503 in assembler source and have the
assembler treat this as a pseudo instruction which
might end up as a single op (if the literal field in my
architecture’s add immediate instruction is large
enough) or an instruction sequence to build up the
literal value somehow.

Yes.Annoying. Sorry. SimpleADL is seen mostly as a
“oooh so that’s how it’s done " educational toy
than a real world tool.

page 14

So | can write any C | like in the semantics
definition of an instruction?

Yes, and that’s another thing that will likely change.
Having to correctly parse and translate the
complete C language seems like much too much
hard work for an architecture specification tool,
which is why simpleADL doesn’t even bother.

But we will likely reduce the scope of what you can
write, and how it’s written in a more realistic tool,
all the while keeping an eye on compiler generation
and pipeline descriptions (when we get round to
implementation models).

How about interrupts and exceptions?

Sorry, we don’t do those in simpleADL.

How about MMUs and caches?

Caches shouldn’t generally be part of an
architecture because running your code with or
without caches should in general only have a
performance impact, not a change in the results - at
least for uniprocessors (although aspects are
architected for multiprocessors because coherence
and the like). MMUs should be part of the
architecture, but we got lazy. It should be pretty
straightforward to add an MMU into your
architecture, perhaps by writing a map() function
which walks the MMU tables/PTEs and is called by a
new version of the readMem() function.

But then you’ll have to write a lot of code, in
assembler, to actually make use of the MMU.And
you will need to add in exceptions/interrupts, too.

| don’t see a test suite.VWhat makes you think this
thing is correct?

It probably isn’t, but (excuses, excuses) the bugs
shouldn’t affect the general structure of the
software, so (excuses, excuses) it’s still OK as an
educational tool. Plus, finding the bugs is good for
you.

| see readMem() and writeMem() as operations, but
neither architectures have any store operations,
and there’s no example program which accesses
memory. Do these reflect a fundamental issue?

Nope.WVe just got lazy and wanted to get
something posted.This is one limitation that will get
fixed in simpleADL, probably using the Sieve of
Eratosthenes as the example program.

How about that compiler generator, then?

Not in simpleADL. Guessing at the semantics from
the instruction semantics is way too complicated

for an educational tool.

page 15

	1.	Introduction
	1.1.	Folder Hierarchy
	2.	Install simpleADL
	3.	Create a new architecture
	3.1.	Running simpleADL
	3.2.	This Release
	3.3.	Limitations

